a2 United States Patent

US009465898B2

10) Patent No.: US 9,465,898 B2

Kumar et al. 45) Date of Patent: Oct. 11, 2016
’
(54) LOOP HANDLING IN A WORD-LEVEL (56) References Cited
NETLIST
U.S. PATENT DOCUMENTS
(71) Applicant: x.elntor .ﬁ}raglfl{lcs (Sforporatlon, 8,122,401 B1* 2/2012 Chauhan et al. 716/107
1isonville, Us) 2010/0077366 Al* 3/2010 Bjesse 716/5
. 2010/0107131 Al* 4/2010 Bjesse . 716/5
(72) Inventors: Sunil Kumar, San Jose, CA (US); 2010/0107132 A1* 42010 Bjesse 716/
Noam Farkash, Mountain View, CA . .
US) * cited by examiner
(73) Assignee: Mentor Graphics Corporation, Primary Examiner — Suchin Parihar
Wilsonville, OR (US) (74) Attorney, Agent, or Firm — Mentor Graphics
Corporation
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (57) ABSTRACT
US.C. 154(b) by 0 days. This application discloses an electronic design automation
. tool configured to identify combinational loops in a word-
(21) Appl. No.: 14/608,603 level netlist, and then modify the word-level netlist based on
(22) Filed: Jan. 29. 2015 the presence of the combinational loops. The electronic
’ e design automation tool can analyze the word-level netlist to
(65) Prior Publication Data identify a portion of the word-level netlist having at least one
characteristic associated with a combinational loop, translate
US 2016/0224710 A1 Aug. 4, 2016 the identified portion of the word-level netlist into a bit-level
circuit representation, and utilize the bit-level circuit repre-
(51) Int. ClL sentation to determine whether the identified portion of the
GOG6F 17/50 (2006.01) word-level netlist implements the combinational loop. The
(52) US. CL electronic design automation tool can modify the word-level
cpe ... GO6F 17/5045 (2013.01); GOGF 17/5081 netlist by replacing the identified combination loop in the
(2013.01) word-level netlist with a description of a different circuit,
(58) Field of Classification Search such as a loop buffer, or annotate the presence of the
CPC GOGF 17/5031 identified combinational loop in the word-level netlist.

USPC .. 716/103
See application file for complete search history.

20 Claims, 8 Drawing Sheets

(START)

Yy

801: IDENTIFY ONE OR MORE

CHARACTERISTICS IN A WORD-LEVEL NETLIST

EXPRESSIONS HAVING LOOP

Y

802: DETERMINE WHICH INPUT(S) IN THE EXPRESSIONS
IMPLEMENT A LOOP

Y

803: TRANSLATE PORTIONS OF THE EXPRESSIONS
CORRESPONDING TO THE IDENTIFIED INPUTS INTO A BIT-LEVEL
CIRCUIT REPRESENTATION

Y

DETERMINE THE ONE OR MOR
LEVEL NETLIST IMPLEMEN

804: UTILIZE THE BIT-LEVEL CIRCUIT REPRESENTATION TO

E EXPRESSIONS IN THE WORD-
T A COMBINATIONAL LOOP

Y

COMBINATI

805: MODIFY THE WORD-LEVEL NETLIST THAT IMPLEMENTS THE

ONAL LOOP

US 9,465,898 B2

Sheet 1 of 8

Oct. 11, 2016

U.S. Patent

€¢l S30I1N3A
1Nd1Nno

H

] E

L¢l S30IA3d
1NdNI

H

611 INIEA
SIA TvOl1dO
A19vVAONTH

H

H

L1 ANIEA
MSIAd ddvH

/

€Ll

H

Gl
JOV4d3INI
NHOMLAN

H

L1l NVY

601 NOY

201 AJOWIN
NILSAS

GOl LINN
d0S5S3004d

€0} LINN ONILNdNOD

U.S. Patent Oct. 11, 2016 Sheet 2 of 8 US 9,465,898 B2

PROCESSOR UNIT 105

l

: |
| |
| |
, PROCESSOR CORE 201 PROCESSOR CORE 201 !
| |
|

l COMPUTING COMPUTING |
l ENGINE 203 ENGINE 203 |
: |
| MEMORY CACHE MEMORY CACHE :
| 205 205 |
: |
| |
| |
| |
| |
, INTERCONNECT 207 :
: |
| |
| |
| |
| INPUT/OUTPUT MEMORY CONTROLLER |
| INTERFACE 209 210 |
, X X |
: |
TO SYSTEM |

: TOBUS 113 MEMORY 107 |
|

: |
: \/ Y I
| |
|

FIG. 2

US 9,465,898 B2

Sheet 3 of 8

Oct. 11, 2016

U.S. Patent

¢ 'Old

70€ LdOd3Y DONISSOHO =
NIVINOQ Y0010

0<c€ LINN MOTHD ONISSOHD NIVINOJ ¥D010

mNm._.m_._._.m_Zn_m_>m_|_-Dw_O>>
d371dNvH-d001

¢Z€ 1LINN NOILVOIdIdOIN LSITL3AN

L¢e LINN NOILD313d 4001

0c€ LINN ONITANVH 40O

GLE 1SITL3AN
TAATT-QHOM

01€ LINMN NOILVHINTO 1SIT71L3N

00€ TO01 MO3IHD NIVINOA MO0 19

<+— ¢0¢ N9IS3d
1IN2dI0

U.S. Patent Oct. 11, 2016 Sheet 4 of 8 US 9,465,898 B2

STRONGLY CONNECTED COMPONENT EXAMPLE

DIRECTED
GRAPH 400

41 \
SCC 410 SOC 420 SCC 430

FIG. 4

U.S. Patent Oct. 11, 2016 Sheet 5 of 8 US 9,465,898 B2

START

501: RECEIVE A CIRCUIT DESIGN DESCRIBING AN ELECTRONIC
DEVICE

'

502: CONVERT THE CIRCUIT DESIGN INTO A WORD-LEVEL
NETLIST

l

503: IDENTIFY AT LEAST ONE COMBINATIONAL LOOP IN THE
WORD-LEVEL NETLIST

'

504: MODIFY THE WORD-LEVEL NETLIST BASED ON THE
IDENTIFIED COMBINATIONAL LOOP

'

505: PERFORM ONE OR MORE CLOCK DOMAIN CROSSING
CHECKS WITH THE MODIFIED WORD-LEVEL NETLIST

END

FIG. 5

U.S. Patent Oct. 11, 2016 Sheet 6 of 8 US 9,465,898 B2

START

601: IDENTIFY AT LEAST A PORTION OF A WORD-LEVEL NETLIST
HAS CHARACTERISTICS ASSOCIATED WITH COMBINATIONAL
LOOPS

'

602: TRANSLATE THE IDENTIFIED PORTION OF THE WORD-LEVEL
NETLIST INTO A BIT-LEVEL CIRCUIT REPRESENTATION

l

603: DETERMINE THE IDENTIFIED PORTION OF THE WORD-LEVEL
NETLIST IMPLEMENTS A COMBINATIONAL LOOP BASED ON THE
BIT-LEVEL CIRCUIT REPRESENTATION

'

604: MODIFY THE IDENTIFIED PORTION OF THE WORD-LEVEL
NETLIST THAT IMPLEMENTS THE COMBINATIONAL LOOP

FIG. 6

US 9,465,898 B2

Sheet 7 of 8

Oct. 11, 2016

U.S. Patent

L '9Old

— 8-¢0/ 119 //

/-¢0. 119

— 9-¢0/ 119

— 6-¢0/ 119

€0 1NdLNO € 104 LNdNI

£ 2L 11g
——¢-cozl1ig | kel LNdNI
LN3IAN3I43a-d0O01

ZZLHIVd N
1NJANIJIA-40O1

¢-¢0/ 119

1-20/ 119 &

lllllllll

oLz
NOISSTHdX3

U.S. Patent Oct. 11, 2016 Sheet 8 of 8 US 9,465,898 B2

START

801: IDENTIFY ONE OR MORE EXPRESSIONS HAVING LOOP
CHARACTERISTICS IN A WORD-LEVEL NETLIST

'

802: DETERMINE WHICH INPUT(S) IN THE EXPRESSIONS
IMPLEMENT A LOOP

l

803: TRANSLATE PORTIONS OF THE EXPRESSIONS
CORRESPONDING TO THE IDENTIFIED INPUTS INTO A BIT-LEVEL
CIRCUIT REPRESENTATION

l

804: UTILIZE THE BIT-LEVEL CIRCUIT REPRESENTATION TO
DETERMINE THE ONE OR MORE EXPRESSIONS IN THE WORD-
LEVEL NETLIST IMPLEMENT A COMBINATIONAL LOOP

'

805: MODIFY THE WORD-LEVEL NETLIST THAT IMPLEMENTS THE
COMBINATIONAL LOOP

END

FIG. 8

US 9,465,898 B2

1
LOOP HANDLING IN A WORD-LEVEL
NETLIST

TECHNICAL FIELD

This application is generally related to electronic design
automation and, more specifically, to loop handling in a
word-level netlist.

BACKGROUND

Microdevices, such as integrated microcircuits and micro-
electromechanical systems (MEMS), are used in a variety of
products, from automobiles to microwaves to personal com-
puters. Designing and fabricating microdevices typically
involves many steps, known as a “design flow.” The par-
ticular steps of a design flow often are dependent upon the
type of microcircuit, its complexity, the design team, and the
microdevice fabricator or foundry that will manufacture the
microcircuit. Typically, software and hardware “tools”
verify the design at various stages of the design flow by
running software simulators and/or hardware emulators, and
errors in the design are corrected or the design is otherwise
improved.

Several steps are common to most design flows for
integrated microcircuits. Initially, the specification for a new
circuit is transformed into a logical design, sometimes
referred to as a register transfer level (RTL) description of
the circuit. With this logical design, the circuit can be
described in terms of both the exchange of signals between
hardware registers and the logical operations that can be
performed on those signals. The logical design typically
employs a Hardware Design Language (HDL), such as the
Very high speed integrated circuit Hardware Design Lan-
guage (VHDL). As part of the creation of a logical design,
a designer will also implement a place-and-route process to
determine the placement of the various portions of the
circuit, along with an initial routing of interconnections
between those portions. The logic of the circuit is then
analyzed, to confirm that it will accurately perform the
functions desired for the circuit. This analysis is sometimes
referred to as “functional verification.”

Various electronic design automation tools can perform
verification checks on the logical design. For example, a
clock-domain tool can analyze the logical design to deter-
mine whether interaction between different clock domains in
the logical design can cause glitches, e.g., due to signal
meta-stability, which may lead to system failure. The clock-
domain tool typically converts or synthesizes the logical
design into a device design, for example, in the form of a
word-level netlist, and performs one or more static checks
on the word-level netlist. Some of the static checks can
traverse the word-level netlist to identify locations of clock
domain crossing points and determine whether the logical
design includes adequate protection circuitry, such as syn-
chronizers, at the identified locations to synchronize signal
exchanges between the clock domains. The clock-domain
tool can further augment the static checks with other veri-
fication processes, such as formal verification, simulation,
emulation, or the like, for example, to verify operability of
transfer protocols between clock domains, to identify delays
through protection circuitry due to meta-stability, or the like.

While the clock-domain tool can effectively verify clock
domain crossings of logical designs, the duration of and the
resources consumed during the static check can vary based
on the specific coding of the logical designs provided to the
clock-domain tool. For example, when a logical design

10

20

25

40

45

55

2

includes cyclical assignment of instances, the clock-domain
tool typically synthesizes or converts those cyclical assign-
ments into combinational loops in a corresponding word-
level netlist. Since traversal of the combinational loops by
the clock-domain tool is onerous, often requiring intensive
non-linear computation to traverse correctly, the more com-
binational loops that are present in the word-level netlist, the
longer and more resource intensive netlist traversal
becomes. This problem can be exacerbated when the clock-
domain tool implements a hierarchical verification scheme
for clock domain crossings, for example, sub-dividing the
word-level netlist into various levels of abstraction, such as
block-level verification, top-level verification, localized
verification, or the like, each of which performs a separate
netlist traversal.

SUMMARY

This application discloses tools and mechanisms for han-
dling loops in an expression netlist representation of a circuit
design. According to various embodiments, the tools and
mechanisms can identify combinational loops in a word-
level netlist, and then modify the word-level netlist based on
the presence of the combinational loops. The tools and
mechanisms can identify one of the combinational loops in
the word-level netlist, for example, by analyzing the word-
level netlist to identify a portion of the word-level netlist
having at least one characteristic associated with a combi-
national loop, translating the identified portion of the word-
level netlist into a bit-level circuit representation, and uti-
lizing the bit-level circuit representation to determine
whether the identified portion of the word-level netlist
implements the combinational loop. The tools and mecha-
nisms can modify the word-level netlist, for example, by
replacing the identified combination loop in the word-level
netlist with a description of a different circuit, such as a loop
buffer, or annotate the presence of the identified combina-
tional loop in the word-level netlist.

DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 illustrate an example of a computer system
of the type that may be used to implement various embodi-
ments of the invention.

FIG. 3 illustrates an example of a clock domain crossing
tool capable of handling loops in a word-level netlist imple-
mented according to various embodiments of the invention.

FIG. 4 illustrates an example of strongly connected com-
ponents (SCCs) in a directed graph according to various
embodiments of the invention.

FIG. 5 illustrates a flowchart showing an example imple-
mentation of a clock domain crossing check for a circuit
design a word-level netlist with combinational loop handling
according to various examples of the invention.

FIG. 6 illustrates a flowchart showing an example imple-
mentation of combinational loop handling according to
various examples of the invention.

FIG. 7 illustrates an example of loop-dependent input-
selective combinational loop handling according to various
embodiments of the invention.

FIG. 8 illustrates a flowchart showing an example imple-
mentation of input-selective combinational loop handling
according to various examples of the invention.

US 9,465,898 B2

3
DETAILED DESCRIPTION

Iustrative Operating Environment

The execution of various electronic design automation
processes according to embodiments of the invention may
be implemented using computer-executable software
instructions executed by one or more programmable com-
puting devices. Because these embodiments of the invention
may be implemented using software instructions, the com-
ponents and operation of a generic programmable computer
system on which various embodiments of the invention may
be employed will first be described. Further, because of the
complexity of some electronic design automation processes
and the large size of many circuit designs, various electronic
design automation tools are configured to operate on a
computing system capable of simultaneously running mul-
tiple processing threads.

Various examples of the invention may be implemented
through the execution of software instructions by a comput-
ing device, such as a programmable computer. Accordingly,
FIG. 1 shows an illustrative example of a computing device
101. As seen in this figure, the computing device 101
includes a computing unit 103 with a processing unit 105
and a system memory 107. The processing unit 105 may be
any type of programmable electronic device for executing
software instructions, but will conventionally be a micro-
processor. The system memory 107 may include both a
read-only memory (ROM) 109 and a random access
memory (RAM) 111. As will be appreciated by those of
ordinary skill in the art, both the read-only memory (ROM)
109 and the random access memory (RAM) 111 may store
software instructions for execution by the processing unit
105.

The processing unit 105 and the system memory 107 are
connected, either directly or indirectly, through a bus 113 or
alternate communication structure, to one or more peripheral
devices. For example, the processing unit 105 or the system
memory 107 may be directly or indirectly connected to one
or more additional memory storage devices, such as a “hard”
magnetic disk drive 115, a removable magnetic disk drive
117, an optical disk drive 119, or a flash memory card 121.
The processing unit 105 and the system memory 107 also
may be directly or indirectly connected to one or more input
devices 123 and one or more output devices 125. The input
devices 123 may include, for example, a keyboard, a point-
ing device (such as a mouse, touchpad, stylus, trackball, or
joystick), a scanner, a camera, and a microphone. The output
devices 125 may include, for example, a monitor display, a
printer and speakers. With various examples of the computer
101, one or more of the peripheral devices 115-125 may be
internally housed with the computing unit 103. Alternately,
one or more of the peripheral devices 115-125 may be
external to the housing for the computing unit 103 and
connected to the bus 113 through, for example, a Universal
Serial Bus (USB) connection.

With some implementations, the computing unit 103 may
be directly or indirectly connected to one or more network
interfaces 127 for communicating with other devices making
up a network. The network interface 127 translates data and
control signals from the computing unit 103 into network
messages according to one or more communication proto-
cols, such as the transmission control protocol (TCP) and the
Internet protocol (IP). Also, the interface 127 may employ
any suitable connection agent (or combination of agents) for
connecting to a network, including, for example, a wireless
transceiver, a modem, or an Ethernet connection. Such

35

40

45

4

network interfaces and protocols are well known in the art,
and thus will not be discussed here in more detail.

It should be appreciated that the computer 101 is illus-
trated as an example only, and it not intended to be limiting.
Various embodiments of the invention may be implemented
using one or more computing devices that include the
components of the computer 101 illustrated in FIG. 1, which
include only a subset of the components illustrated in FIG.
1, or which include an alternate combination of components,
including components that are not shown in FIG. 1. For
example, various embodiments of the invention may be
implemented using a multi-processor computer, a plurality
of single and/or multiprocessor computers arranged into a
network, or some combination of both.

With some implementations of the invention, the proces-
sor unit 105 can have more than one processor core. Accord-
ingly, FIG. 2 illustrates an example of a multi-core processor
unit 105 that may be employed with various embodiments of
the invention. As seen in this figure, the processor unit 105
includes a plurality of processor cores 201. Each processor
core 201 includes a computing engine 203 and a memory
cache 205. As known to those of ordinary skill in the art, a
computing engine contains logic devices for performing
various computing functions, such as fetching software
instructions and then performing the actions specified in the
fetched instructions. These actions may include, for
example, adding, subtracting, multiplying, and comparing
numbers, performing logical operations such as AND, OR,
NOR and XOR, and retrieving data. Each computing engine
203 may then use its corresponding memory cache 205 to
quickly store and retrieve data and/or instructions for execu-
tion.

Each processor core 201 is connected to an interconnect
207. The particular construction of the interconnect 207 may
vary depending upon the architecture of the processor unit
201. With some processor cores 201, such as the Cell
microprocessor created by Sony Corporation, Toshiba Cor-
poration and IBM Corporation, the interconnect 207 may be
implemented as an interconnect bus. With other processor
units 201, however, such as the Opteron™ and Athlon™
dual-core processors available from Advanced Micro
Devices of Sunnyvale, Calif., the interconnect 207 may be
implemented as a system request interface device. In any
case, the processor cores 201 communicate through the
interconnect 207 with an input/output interface 209 and a
memory controller 211. The input/output interface 209 pro-
vides a communication interface between the processor unit
201 and the bus 113. Similarly, the memory controller 211
controls the exchange of information between the processor
unit 201 and the system memory 107. With some imple-
mentations of the invention, the processor units 201 may
include additional components, such as a high-level cache
memory accessible shared by the processor cores 201.

It also should be appreciated that the description of the
computer network illustrated in FIG. 1 and FIG. 2 is
provided as an example only, and it not intended to suggest
any limitation as to the scope of use or functionality of
alternate embodiments of the invention.

Loop Handling in a Word-Level Netlist

FIG. 3 illustrates an example of a clock domain check tool
300 capable of handling loops in a word-level netlist 315
implemented according to various embodiments of the
invention. Referring to FIG. 3, the clock domain check tool
300 can receive a circuit design 302 modeling an electronic
device at a register transfer level (RTL), for example, with
code in a hardware description language (HDL), such as
Verilog, Very high speed integrated circuit Hardware Design

US 9,465,898 B2

5

Language (VHDL), or the like. The circuit design 302 can
describe the electronic device both in terms of an exchange
of data signals between components in the electronic device,
such as hardware registers, flip-flops, combinational logic,
or the like, and in terms of logical operations that can be
performed on the data signals in the electronic device. In
some embodiments, the clock domain check tool 300 can
receive the circuit design 302 from a source external to the
clock domain check tool 300, such as a user interface of the
computing device 101, another tool implemented by the
computing device 101, or the clock domain check tool 300
may internally generate the circuit design 302.

The clock domain check tool 300 can include a netlist
generation unit 310 to convert the circuit design 302 into a
word-level netlist 315. The word-level netlist 315 can
describe the electronic device as groups of logical expres-
sions along with their associated connectivity. In some
embodiments, the word-level netlist can be implemented in
a directed graph having nodes corresponding to expressions
in the word-level netlist 315 and edges or arcs corresponding
to directional inputs and directional outputs of the various
expressions in the word-level netlist 315.

The clock domain check tool 300 can include a loop
handling unit 320 to detect one or more combinational loops
in the word-level netlist 315. When one or more combina-
tional loops have been detected in the word-level netlist,
315, the loop handling unit 320 can modity the word-level
netlist 315, for example, corresponding to the detected
combinational loops. This modification of the word-level
netlist 315 can generate a loop-handled word-level netlist
325, which can be output from the loop handling unit 320 for
further utilization by the clock domain check tool 300. In
some embodiments, when the loop handling unit 320 does
not modify the word-level netlist 315, the loop handling unit
320 can output the word-level netlist 315 received from the
netlist generation unit 310 as the loop-handled word-level
netlist 325.

The loop handling unit 320 can include a loop detection
unit 321 to detect one or more combinational loops in the
word-level netlist 315, for example, by converting the
word-level netlist 315 or selected portion(s) thereof into a
bit-level representation and determining whether the bit-
level representation includes at least one bit-accurate loop.
The loop detection unit 321 can identify a presence of a
combinational loop in the word-level netlist 315 when the
bit-level representation implements a bit-accurate loop.

Since the conversion of the word-level netlist 315 into its
corresponding bit-level representation can be time and
resource intensive, the loop detection unit 321 can identify
portions of the word-level netlist 315 having loop charac-
teristics and convert those portions into a bit-level repre-
sentation rather than the entire word-level netlist 315. In
some embodiments, the loop detection unit 321 can identity
the portions of the word-level netlist 315 having loop
characteristics by computing strongly connected compo-
nents within the word-level netlist 315, for example, utiliz-
ing Tarjan’s strongly connected component algorithm,
Kosaraju’s strongly connected component algorithm, a path-
based strong component algorithm, or the like. The strongly
connected components can correspond to expression-level
loops in the word-level netlist 315, for example, with
expression nodes being reachable by the other expression
node(s) in a common strongly connected component.

FIG. 4 illustrates an example of strongly connected com-
ponents (SCCs) in a directed graph 400 according to various
embodiments of the invention. Referring to FIG. 4, a
directed graph 400 can include multiple nodes 401-408 and

10

15

20

25

30

35

40

45

50

55

60

65

6

directional arcs to describe connectivity between the mul-
tiple nodes 401-408. In some embodiments, when the
directed graph 400 corresponds to a word-level netlist, such
as word-level netlist 315 shown in FIG. 3, the nodes of the
directed graph 400 can correspond to expressions in the
word-level netlist and the arcs can correspond to directional
inputs and directional outputs of the expressions.

The directed graph 400 can include multiple strongly
connected components 410-430, which can each include
multiple nodes having directional arcs that form a feedback
path through their respective nodes. These feedback paths in
the strongly connected components 410-430 have the char-
acteristics of loops in the directed graph 400. For example,
the strongly connected component 410 can include nodes
401, 402 and 405, which can have a feedback path from
node 401 to node 402 to node 405 and then back to node
401. Since this path feeds through the nodes 401, 402, and
405, those three nodes form a strongly connected compo-
nent. Similarly, the directed graph 400 can include the
strongly connected component 420 having nodes 406 and
407, and include the strongly connected component 430
having nodes 403, 404, and 408.

Referring back to FIG. 3, the loop detection unit 321 can
selectively convert portions of the word-level netlist 315
corresponding to the expression-level loops, such as the
computed strongly connected component(s) or portions
thereof, into bit-level representations. In some embodi-
ments, the loop detection unit 321 can bit-blast the computed
strongly connected component(s) or portions thereof, which
converts them into bit-level circuit representations. The loop
detection unit 321 can determine whether the bit-level
representations implement at least one bit-accurate loop, for
example, by computing strongly connected components
within the bit-level representations. The loop detection unit
321 can detect a combinational loop in a portion of the
word-level netlist 315 based on an identification of a
strongly connected component in the bit-level representation
of that portion of the word-level netlist 315.

The loop handling unit 320 can include a netlist modifi-
cation unit 322 to modify the word-level net list 315 based,
at least in part, on the detection of the one or more combi-
nation loops in the word-level netlist 315. In some embodi-
ments, the netlist modification unit 322 can modify the
word-level net list 315 by replacing a portion of the word-
level netlist 315 corresponding to each detected combina-
tional loop with a description of a different structure, such as
a loop buffer, or the like, which may be easier to traverse
than the detected combinational loop. The netlist modifica-
tion unit 322 also can annotate the word-level netlist 315, for
example, pointing out an existence of the detected combi-
national loops in the word-level netlist 315, one or more
characteristics of the detected combination loops, or the like.
The modified version of the word-level netlist 315 can
correspond to a loop-handled word-level netlist 325.

The clock domain check tool 300 can include a clock
domain crossing check unit 330 to perform one or more
clock domain crossing checks on the loop-handled word-
level netlist 325. For example, the clock domain crossing
check unit 330 can perform one or more static checks, which
can include a traversal of the loop-handled word-level netlist
325 to identify various clock domains in the circuit design
302. The clock domain crossing check unit 330 can analyze
locations where different clock domains interface with each
other, sometimes called clock domain crossing points, and
determine of whether the circuit design 302 includes pro-
tection circuitry to synchronize signal exchanges between
the clock domains at the locations. In some embodiments,

US 9,465,898 B2

7

the clock domain crossing check unit 330 also can augment
the static checks with other verification processes, such as
formal verification, simulation, emulation, or the like, for
example, to verify operability of transfer protocols between
clock domains, to identity delays through protection cir-
cuitry due to meta-stability, or the like. The clock domain
crossing check unit 330 can generate a clock domain cross-
ing report 304, for example, with results from the various
clock domain crossing checks performed by the clock
domain crossing check unit 330 on the loop-handled word-
level netlist 325.

FIG. 5 illustrates a flowchart showing an example imple-
mentation of a clock domain crossing check with combina-
tional loop handling according to various examples of the
invention. Referring to FIG. 5, in a block 501, a design
verification tool, such as clock domain check tool 300 shown
in FIG. 3, can receive a circuit design describing an elec-
tronic device, for example, both in terms of an exchange of
data signals between components in the electronic device,
such as hardware registers, flip-flops, combinational logic,
or the like, and in terms of logical operations that can be
performed on the data signals in the electronic device. The
circuit design can model the electronic device at a register
transfer level (RTL), for example, with code in a hardware
description language (HDL), such as Verilog, Very high
speed integrated circuit Hardware Design Language
(VHDL), or the like.

In a block 502, the design verification tool can convert the
circuit design into a word-level netlist, for example, by
synthesizing or compiling the circuit design. The word-level
netlist can describe the electronic device as groups of logical
expressions and their associated connectivity. In some
embodiments, the word-level netlist can be implemented in
a directed graph having nodes corresponding to expressions
in the word-level netlist and edges or arcs corresponding to
directional inputs and directional outputs of the various
expressions in the word-level netlist.

In a block 503, the design verification tool can identify at
least one combinational loop in the word-level netlist. In
some embodiments, the design verification tool can detect
combinational loops in the word-level netlist by converting
selected portions of the word-level netlist into a bit-level
representation, and determining whether the bit-level repre-
sentation of the word-level netlist includes a bit-accurate
loop. The presence of a bit-accurate loop in the bit-level
representation of the word-level netlist can indicate that the
word-level netlist includes a combination loop correspond-
ing to the bit-accurate loop. In some embodiments, the
design verification tool can select the portions of the word-
level netlist to convert into bit-level representations based on
a presence of loop characteristics, such as an expression-
level loop, in the portions of the word-level netlist.

In a block 504, the design verification tool can modify the
word-level netlist based on the identified combinational
loop. In some embodiments, the design verification tool can
modify the word-level net list by replacing a portion of the
word-level netlist corresponding to each detected combina-
tional loop with a description of a different structure, such as
a loop buffer, or the like, which may be easier to computa-
tionally traverse than the detected combinational loop. The
design verification tool also can annotate the word-level
netlist, for example, pointing out an existence of the detected
combinational loops in the word-level netlist, one or more
characteristics of the detected combination loops, or the like.

In a block 505, the design verification tool can perform
one or more clock domain crossing checks with the modified
word-level netlist. For example, the design verification tool

10

15

20

25

30

35

40

45

50

55

60

65

8

may be configured to perform one or more clock domain
checks on the modified word-level netlist. In some embodi-
ments, the clock domain checks can include one or more
static checks, which can include a traversal of the modified
word-level netlist to identify various clock domains in the
circuit design. The clock design verification tool can analyze
locations where different clock domains interface with each
other, sometimes called clock domain crossing points, and
determine of whether the circuit design includes protection
circuitry to synchronize signal exchanges between the clock
domains at the locations. In some embodiments, the design
verification tool also can augment the static checks with
other verification processes, such as formal verification,
simulation, emulation, or the like, for example, to verify
operability of transfer protocols between clock domains, to
identify delays through protection circuitry due to meta-
stability, or the like.

FIG. 6 illustrates a flowchart showing an example imple-
mentation of combinational loop handling according to
various examples of the invention. Referring to FIG. 6, in a
block 601, a design verification tool, such as clock domain
check tool 300 shown in FIG. 3, can identify at least a
portion of a word-level netlist has characteristics associated
with combinational loops. In some embodiments, a presence
of expression-level loops in the word-level netlist can cor-
respond to the loop characteristics. The design verification
tool can identify these expression-level loops in a variety of
different ways, including through the use of a strongly
connected component algorithm or process, which can com-
pute strongly connected components in the word-level
netlist. Each strongly connected component can correspond
to one or more express-level loops in the word-level netlist.

In a block 602, the design verification tool can translate
the identified portion of the word-level netlist into a bit-level
circuit representation. In some embodiments, the design
verification tool can generate the bit-level circuit represen-
tation by bit-blasting the identified portion of the word-level
netlist.

In a block 603, the design verification tool can determine
the identified portion of the netlist implements a combina-
tional loop based on the bit-level circuit representation. The
design verification tool can determine whether the bit-level
circuit representation includes a bit-accurate loop, for
example, through the use of a strongly connected component
algorithm or process, which can compute strongly connected
components in the bit-level circuit representation. Each
strongly connected component in the bit-level circuit repre-
sentation can correspond to one or more bit-accurate loops
in the word-level netlist. Since an identification of a bit-
accurate loop indicates a presence of a combinational loop
in the word-level netlist, the design verification tool can
determine the identified portion of the netlist implements a
combinational loop based on the bit-level circuit represen-
tation.

In a block 604, the design verification tool can modify the
identified portion of the netlist that implements the combi-
national loop. In some embodiments, the design verification
tool can modify the identified portion of the word-level net
list by replacing the identified portion of the word-level
netlist corresponding to each detected combinational loop
with a description of a different structure, such as a loop
buffer, or the like, which may be easier to computationally
traverse than the detected combinational loop. The design
verification tool also can annotate the word-level netlist, for
example, pointing out an existence of the detected combi-
national loops in the word-level netlist, one or more char-
acteristics of the detected combination loops, or the like.

US 9,465,898 B2

9

FIG. 7 illustrates an example of loop-dependent input-
selective combinational loop handling according to various
embodiments of the invention. Referring to FIG. 7, an
expression 710 in an expression-level loop of a word-level
netlist is shown. The expression 710 can generate an output
703 from an input 701 having bits 702-1 to 702-8 based on
the functionality of the expression 710. The expression 710
can include multiple sub-expressions 711-720, coupled to
implement the functionality of the expression 710. Although
FIG. 7 shows the input 701 having eight bits and the
expression 710 including 10 sub-expressions 711-720, this is
merely illustrative. In some embodiments, expressions in the
expression-level loop can receive input(s) with any number
of bits and include any number of sub-expressions variously
interconnected to provide an output based on the input(s).

A design verification tool can analyze the expression 710
in the expression-level loop to identify which input bits
702-1 to 702-8 to the expression 710 implements at least a
portion of the expression-level loop. In this illustrative
example, input bit 702-4 can implement at least a portion of
the expression-level loop and thus can be identified as a
loop-dependent input 721. The design verification tool can
utilize the loop-dependent input 721 to identify a loop-
dependent path 722 in the expression 710. The loop-depen-
dent path 722 can correspond to a path through the expres-
sion 710 having an output controlled at least in part by the
loop-dependent input 721. The loop-dependent path 722 can
include one or more of the sub-expressions 711-720 of the
expression 710, such as sub-expressions 712, 715, 718, and
720, which can provide a path from the loop-dependent
input 721 to the output 703.

The design verification tool, when attempting to identify
combinational loops in the word-level netlist, can selectively
bit-blast the loop-dependent path 722 in the expression 710
rather than bit-blasting the entire expression 710. By iden-
tifying input bit(s) of the expression 710 that implement a
portion of the expression-level loop and the corresponding
sub-expressions in the expression 710 affected by the iden-
tified input bit(s), the design verification tool can selectively
bit-blast a portion of the expression 710 in the expression-
level loop of the word-level netlist. This selective bit-
blasting can help reduce processing time and resources,
while retaining the ability to effectively detect combina-
tional loops in the word-level netlist.

FIG. 8 illustrates a flowchart showing an example imple-
mentation of input-selective combinational loop handling
according to various examples of the invention. Referring to
FIG. 8, in a block 801, a design verification tool, such as
clock domain check tool 300 shown in FIG. 3, can identify
one or more expressions having loop characteristics in a
netlist. Since expressions within expression-level loops hav-
ing the loop characteristics, the design verification tool can
identify expression-level loops in the word-level netlist, for
example, by computing strongly connected components in
the word-level netlist, and then identify the expressions in
the expression-level loops.

In a block 802, the design verification tool can determine
which input(s) in the expressions implement a loop. For
example, the design verification tool can review the expres-
sion-level loops or strongly connected components in the
word-level netlist to determine which expression outputs
and inputs implement the expression-level loops.

In a block 803, the design verification tool can translate
portions of the expressions corresponding to the identified
inputs into a bit-level circuit representation. In some
embodiments, the design verification tool can bit-blast the

10

15

20

25

30

35

40

45

50

55

60

65

10

portions of the expressions corresponding to the identified
inputs, converting the portions into a bit-level circuit rep-
resentation.

As discussed above, since bit-blasting or otherwise con-
verting a word-level netlist into a bit-level representation
can be a time and resource consuming process, the ability of
the design verification tool to avoid having to bit-blast or
otherwise convert any portion of the word-level netlist into
a bit-level representation can improve system performance.
By identifying portions of expressions that implement
expression-level loops, the design verification tool can
reduce a total amount of the word-level netlist to bit-blast or
otherwise convert into a bit-level representation, while still
retaining the ability to effectively identify combinational
loops in the word-level netlist.

In a block 804, the design verification tool can utilize the
bit-level circuit representation to determine the one or more
expressions in the netlist implement a combinational loop.
The design verification tool can determine whether the
bit-level circuit representation includes a bit-accurate loop,
for example, through the use of a strongly connected com-
ponent algorithm or process, which can compute strongly
connected components in the bit-level circuit representation.
Each strongly connected component in the bit-level circuit
representation can correspond to one or more bit-accurate
loops in the word-level netlist. Since an identification of a
bit-accurate loop indicates a presence of a combinational
loop in the word-level netlist, the design verification tool can
determine the identified portion of the netlist implements a
combinational loop based on the bit-level circuit represen-
tation.

In a block 805, the design verification tool can modify the
netlist that implements the combinational loop. In some
embodiments, the design verification tool can modify the
identified portion of the word-level net list by replacing the
identified portion of the word-level netlist corresponding to
each detected combinational loop with a description of a
different structure, such as a loop buffer, or the like, which
may be easier to computationally traverse than the detected
combinational loop. The design verification tool also can
annotate the word-level netlist, for example, pointing out an
existence of the detected combinational loops in the word-
level netlist, one or more characteristics of the detected
combination loops, or the like.

The system and apparatus described above may use
dedicated processor systems, micro controllers, program-
mable logic devices, microprocessors, or any combination
thereof, to perform some or all of the operations described
herein. Some of the operations described above may be
implemented in software and other operations may be imple-
mented in hardware. Any of the operations, processes,
and/or methods described herein may be performed by an
apparatus, a device, and/or a system substantially similar to
those as described herein and with reference to the illus-
trated figures.

The processing device may execute instructions or “code”
stored in memory. The memory may store data as well. The
processing device may include, but may not be limited to, an
analog processor, a digital processor, a microprocessor, a
multi-core processor, a processor array, a network processot,
or the like. The processing device may be part of an
integrated control system or system manager, or may be
provided as a portable electronic device configured to inter-
face with a networked system either locally or remotely via
wireless transmission.

The processor memory may be integrated together with
the processing device, for example RAM or FLASH

US 9,465,898 B2

11

memory disposed within an integrated circuit microproces-
sor or the like. In other examples, the memory may comprise
an independent device, such as an external disk drive, a
storage array, a portable FLASH key fob, or the like. The
memory and processing device may be operatively coupled
together, or in communication with each other, for example
by an 1/O port, a network connection, or the like, and the
processing device may read a file stored on the memory.
Associated memory may be “read only” by design (ROM)
by virtue of permission settings, or not. Other examples of
memory may include, but may not be limited to, WORM,
EPROM, EEPROM, FLASH, or the like, which may be
implemented in solid state semiconductor devices. Other
memories may comprise moving parts, such as a known
rotating disk drive. All such memories may be “machine-
readable” and may be readable by a processing device.

Operating instructions or commands may be implemented
or embodied in tangible forms of stored computer software
(also known as “‘computer program” or “code”). Programs,
or code, may be stored in a digital memory and may be read
by the processing device. “Computer-readable storage
medium” (or alternatively, “machine-readable storage
medium”) may include all of the foregoing types of memory,
as well as new technologies of the future, as long as the
memory may be capable of storing digital information in the
nature of a computer program or other data, at least tempo-
rarily, and as long at the stored information may be “read”
by an appropriate processing device. The term “computer-
readable” may not be limited to the historical usage of
“computer” to imply a complete mainframe, mini-computer,
desktop or even laptop computer. Rather, “computer-read-
able” may comprise storage medium that may be readable
by a processor, a processing device, or any computing
system. Such media may be any available media that may be
locally and/or remotely accessible by a computer or a
processor, and may include volatile and non-volatile media,
and removable and non-removable media, or any combina-
tion thereof.

A program stored in a computer-readable storage medium
may comprise a computer program product. For example, a
storage medium may be used as a convenient means to store
or transport a computer program. For the sake of conve-
nience, the operations may be described as various inter-
connected or coupled functional blocks or diagrams. How-
ever, there may be cases where these functional blocks or
diagrams may be equivalently aggregated into a single logic
device, program or operation with unclear boundaries.

CONCLUSION

While the application describes specific examples of
carrying out embodiments of the invention, those skilled in
the art will appreciate that there are numerous variations and
permutations of the above described systems and techniques
that fall within the spirit and scope of the invention as set
forth in the appended claims. For example, while specific
terminology has been employed above to refer to electronic
design automation processes, it should be appreciated that
various examples of the invention may be implemented
using any desired combination of electronic design automa-
tion processes.

One of skill in the art will also recognize that the concepts
taught herein can be tailored to a particular application in
many other ways. In particular, those skilled in the art will
recognize that the illustrated examples are but one of many
alternative implementations that will become apparent upon
reading this disclosure.

20

30

35

40

45

50

55

65

12

Although the specification may refer to “an”, “one”,
“another”, or “some” example(s) in several locations, this
does not necessarily mean that each such reference is to the
same example(s), or that the feature only applies to a single
example.
The invention claimed is:
1. A method comprising:
detecting, by a computing system, a presence of a com-
binational loop in a word-level netlist representation of
a circuit design by identifying a portion of the word-
level netlist having at least one characteristic associated
with the combinational loop, translating the identified
portion of the word-level netlist into a bit-level circuit
representation, and utilizing the bit-level circuit repre-
sentation to determine the identified portion of the
word-level netlist includes the combinational loop; and

modifying, by the computing system, the word-level
netlist corresponding to the detected presence of the
combinational loop.

2. The method of claim 1, wherein modifying the word-
level netlist further comprises replacing the identified por-
tion of the word-level netlist that includes the combinational
loop with a loop buffer element.

3. The method of claim 1, wherein modifying the word-
level netlist further comprises annotating the word-level
netlist to annunciate the presence of the combinational loop
included in the identified portion of the word-level netlist.

4. The method of claim 1, wherein identifying the portion
of'the word-level netlist having the at least one characteristic
associated with the combinational loop further comprises
computing a strongly connected component in the word-
level netlist, the strongly connected component correspond-
ing to the identified portion of the word-level netlist having
the at least one characteristic associated with the combina-
tional loop.

5. The method of claim 4, wherein translating the iden-
tified portion of the word-level netlist into the bit-level
circuit representation further comprises performing bit-
blasting operations on the strongly connected component to
generate the bit-level circuit representation.

6. The method of claim 4, wherein detecting the presence
of the combinational loop in the word-level netlist further
comprising identifying at least one input of the strongly
connected component utilized to implement the combina-
tional loop, and wherein translating the identified portion of
the word-level netlist into the bit-level circuit representation
further comprises performing bit-blasting operations on a
portion of the strongly connected component corresponding
to the at least one input, which generates the bit-level circuit
representation.

7. The method of claim 1, wherein utilizing the bit-level
circuit representation to determine whether the identified
portions of the word-level netlist implement the combina-
tional loop further comprises computing a strongly con-
nected component in the bit-level circuit representation,
wherein a presence of the strongly connected component in
the bit-level circuit representation indicates the identified
portion of the word-level netlist implements the combina-
tional loop.

8. An apparatus comprising at least one computer-read-
able memory device storing instructions configured to cause
one or more processing devices to perform operations com-
prising:

detecting a presence of a combinational loop in an expres-

sion netlist representation of a circuit design by iden-
tifying a portion of the expression netlist having at least
one characteristic associated with the combinational

113

US 9,465,898 B2

13

loop, translating the identified portion of the expression
netlist into a bit-level circuit representation, and utiliz-
ing the bit-level circuit representation to determine the
identified portion of the expression netlist includes the
combinational loop; and

modifying the expression netlist corresponding to the

detected presence of the combinational loop.

9. The apparatus of claim 8, wherein modifying the
expression netlist further comprises replacing the identified
portion of the expression netlist that includes the combina-
tional loop with a loop buffer element.

10. The apparatus of claim 8, wherein modifying the
expression netlist further comprises annotating the expres-
sion netlist to annunciate the presence of the combinational
loop included in the identified portion of the expression
netlist.

11. The apparatus of claim 8, wherein identifying the
portion of the expression netlist having the at least one
characteristic associated with the combinational loop further
comprises computing a strongly connected component in the
expression netlist, the strongly connected component corre-
sponding to the identified portion of the expression netlist
having the at least one characteristic associated with the
combinational loop.

12. The apparatus of claim 11, wherein translating the
identified portion of the expression netlist into the bit-level
circuit representation further comprises performing bit-
blasting operations on the strongly connected component to
generate the bit-level circuit representation.

13. The apparatus of claim 11, wherein detecting the
presence of the combinational loop in the expression netlist
further comprises identifying at least one input of the
strongly connected component utilized to implement the
combinational loop, and wherein translating the identified
portions of the expression netlist into the bit-level circuit
representation further comprises performing bit-blasting
operations on a portion of the strongly connected component
corresponding to the at least one input, which generates the
bit-level circuit representation.

14. The apparatus of claim 8, wherein utilizing the bit-
level circuit representation to determine whether the iden-
tified portions of the expression netlist implement the com-
binational loop further comprises computing a strongly
connected component in the bit-level circuit representation,
wherein a presence of the strongly connected component in
the bit-level circuit representation indicates the identified
portion of the expression netlist implements the combina-
tional loop.

10

20

25

30

35

40

45

14

15. A system comprising:

a memory system configured to store computer-execut-

able instructions; and

a computing system, in response to execution of the

computer-executable instructions, is configured to:

detect a presence of a combinational loop in a word-
level netlist representation of a circuit design by
identifying a portion of the word-level netlist having
at least one characteristic associated with the com-
binational loop, translating the identified portion of
the word-level netlist into a bit-level circuit repre-
sentation, and utilizing the bit-level circuit represen-
tation to determine the identified portion of the
word-level netlist includes the combinational loop;
and

modify the word-level netlist corresponding to the
detected presence of the combinational loop.

16. The system of claim 15, wherein the computing
system, in response to execution of the computer-executable
instructions, is further configured to modify the word-level
netlist by replacing the identified portion of the word-level
netlist that includes the combinational loop with a loop
buffer element.

17. The system of claim 15, wherein the computing
system, in response to execution of the computer-executable
instructions, is further configured to modify the word-level
netlist by annotating the word-level netlist to annunciate the
presence of the combinational loop included in the identified
portion of the word-level netlist.

18. The system of claim 15, wherein identifying the
portion of the word-level netlist having the at least one
characteristic associated with the combinational loop further
comprises computing a strongly connected component in the
word-level netlist, the strongly connected component cor-
responding to the identified portion of the word-level netlist
having the at least one characteristic associated with the
combinational loop.

19. The system of claim 18, wherein translating the
identified portion of the word-level netlist into the bit-level
circuit representation further comprises performing bit-
blasting operations on the strongly connected component to
generate the bit-level circuit representation.

20. The system of claim 15, wherein utilizing the bit-level
circuit representation to determine the identified portion of
the word-level netlist implement the combinational loop
further comprises computing a strongly connected compo-
nent in the bit-level circuit representation, wherein a pres-
ence of the strongly connected component in the bit-level
circuit representation indicates the identified portion of the
word-level netlist includes the combinational loop.

#* #* #* #* #*

